THE INDIVIDUAL ERGODIC THEOREM FOR *p*-SEQUENCES

BY

J. R. BLUM AND J. I. REICH

ABSTRACT

Let (Ω, \mathcal{F}, P) be a probability space and let T be a measure-preserving weak mixing transformation. We define a large class of sequences of integers called p-sequences, such that if $f \in L_1$ there exists a set $\Omega' \subset \Omega$ of probability one and for $\omega \in \Omega'$ we have

$$\lim_{n\to\infty}\frac{1}{n}\sum_{j=1}^n f(T^{k_j}\omega) = \int_{\Omega} f(\omega)\mu(d\omega)$$

for every *p*-sequence $\{k_n\}$.

Preliminaries

Let G be a locally compact abelian group and let \hat{G} be its dual, i.e. \hat{G} is the collection of continuous homomorphisms from G to the complex unit circle C, endowed with the topology inherited from G. Let \hat{G}_d be \hat{G} with the discrete topology. Then $\hat{G}_d = \bar{G}$ is called the Bohr compactification of G. \bar{G} is a compact group such that G is a dense subset of \bar{G} and with m being Haar measure on \bar{G} we have m(G) = 0. Now let $\{\mu_n\}_{n=1}^{\infty}$ be a sequence of probability measures defined on the Borel sets of \bar{G} . In an obvious way we may consider each μ_n as a measure on the Borel sets of \bar{G} . We shall call such a sequence $\{\mu_n\}$ ergodic if $\lim_n \mu_n = m$ weakly, i.e. if for every continuous function f defined on \bar{G} we have

$$\lim_{n}\int_{\bar{G}} f(g)\mu_{n}(dg) = \int_{\bar{G}} f(g)m(dg).$$

The terminology arises from the fact that for such sequences one has a generalized mean ergodic theorem. If U(g) is a continuous unitary representation of G on some Hilbert space H, then strong $\lim_n \int_G U(g)\mu_n(dg) = P$, where P is the projection on the subspace $\{f \in H \mid U(g)f = f \text{ for all } g \in G\}$, as was

Received November 30, 1975

shown in [1]. Now let $0 \le p \le 1$ and let S be a Borel subset of G. We shall call S a p-set if $\lim_n \int_{G\chi_S}(g)\mu_n(dg) = P$, for every ergodic sequence $\{\mu_n\}$. While we have been unable to characterize p-sets completely it is very easy to provide examples of them. Let A be a Borel subset of \overline{G} such that $m(\partial A) = 0$, i.e. A is a continuity set for Haar measure. Let $S = \overline{A} \cap G$. Then it follows at once that $\lim_n \int_{G\chi_S}(g)\mu_n(dg) = m(A)$ for every ergodic sequence $\{\mu_n\}$. Thus S is a p-set with p = m(A). To construct such a set let B be a continuity set for Lebesgue measure on C, and let $A = \{g \in \overline{G} | \langle \gamma, g \rangle \in B\}$, where γ is an arbitrary character of \overline{G} of infinite order. Then it is not difficult to show that A is a continuity set for m and that m(A) = l(B), where l is Lebesgue measure on C. Finally it is again easy to see that $S = \{g \in G | \langle \gamma, g \rangle \in B\}$. When G = Z and α is an irrational multiple of π we obtain in this way $S = \{n \in Z | e^{im\alpha} \in B\}$. Thus S is a p-set with p = l(B).

Ergodic theorems

Now let (Ω, \mathcal{F}, P) be a probability space and let T be a measure-preserving transformation of Ω into itself. T is ergodic if

$$\lim_{n}\frac{1}{n}\sum_{j=1}^{n}P(T'A\cap B)=P(A)P(B)$$

for all $A, B \in \mathcal{F}$, and T is weakly mixing if

$$\lim_{n}\frac{1}{n}\sum_{j=1}^{n}|P(T'A\cap B)-P(A)P(B)|=0.$$

We shall use a remarkable theorem of Wiener and Wintner [4] which we state here.

THEOREM (Wiener-Wintner). Let T be ergodic and let $f \in L_1(P)$. Then there exists a set Ω' of probability one such that for $\omega \in \Omega'$ we have $\lim_{n\to\infty}(1/n)\sum_{j=1}^{n}f(T'\omega)e^{j\alpha}$ exists for all α with $0 \le \alpha \le 2\pi$. If moreover T is weakly mixing then the above limit is zero for $0 < \alpha < 2\pi$.

The fact that for each fixed α there exists a set of probability one for which the limit exists is an immediate consequence of the individual ergodic theorem. The interesting feature of the Wiener-Wintner theorem is that the set of convergence is independent of α .

Now suppose $f \in L_1(P)$. Without loss of generality assume that $f \ge 0$ and that $\int_{\Omega} f(\omega) P(d\omega) = 1$. Suppose T is weakly mixing. It follows from the above theorem that $(1/n) \sum_{j=1}^{n} f(T'\omega) e^{j\alpha} \to 0$ for $0 < \alpha < 2\pi$ simultaneously for almost

every ω . Pick such an ω and define the sequence of measures $\{\mu_{n,\omega}\}$ on Z by $\mu_{n,\omega}(j) = f(T'\omega)/n$, for $j = 1, \dots, n$ and $\mu_{n,\omega}(j) = 0$ otherwise. Then the Fourier transform $\hat{\mu}_{n,\omega}(\alpha) = (1/n)\sum_{j=1}^{n} f(T'\omega)e^{j\alpha}$ and it follows from the above that

$$\lim_{n\to\infty}\hat{\mu}_{n,\omega}(\alpha) = \begin{cases} 0, \ 0 < \alpha < 2\pi\\ 1, \ \alpha = 0 \end{cases}$$

But if m is Haar measure on \bar{Z} then

$$\hat{m}(\alpha) = \begin{cases} 0, 0 < \alpha < 2\pi \\ 1, \alpha = 0 \end{cases}$$

Thus $\{\mu_{n,\omega}\}$ is an ergodic sequence. Now let S be a p-set of integers with p > 0, and let $\{k_1, k_2, \dots\} = S \cap Z^+$. We shall call the sequence $\{k_1, k_2, \dots\}$ a psequence. Note that the asymptotic density of a p-sequence is p, since it is easy to verify that the sequence of measures $\{\nu_n\}$, where ν_n puts mass 1/n on the first n integers is an ergodic sequence. Now we have

$$\lim_{n}\int_{Z} \chi_{s}(j)\mu_{n,\omega}(d_{j}) = \lim_{n}\frac{1}{n}\sum_{j=1}^{n}f(T^{j}\omega)\chi_{s}(j) = p$$

since S is a p-set, and hence

$$\lim_{n}\frac{1}{k_{n}}\sum_{j=1}^{n}f(T^{k_{j}}\omega)=p$$

Finally then

$$\lim_{n} \frac{1}{n} \sum_{j=1}^{n} f(T^{k_{j}}\omega) = \lim_{n} \frac{k_{n}}{n} \frac{1}{k_{n}} \sum_{j=1}^{n} f(T^{k_{j}}\omega) = 1,$$

since $\lim_{n \to \infty} k_n / n = 1/p$. We summarize in the

THEOREM. Let T be weakly mixing and let $f \in L_1(P)$. There exists a set Ω' of probability one such that if $\omega \in \Omega'$ we have

$$\lim_{n}\frac{1}{n}\sum_{j=1}^{n}f(T^{k_{j}}\omega)=\int_{\Omega}f(\omega)P(d\omega)$$

for every p-sequence $\{k_1, k_2, \cdots\}$ with p > 0.

REMARK. If B is a continuity set for Lebesgue measure on T and α is an irrational multiple of π , then as noted above, the sequence $\{k_1, k_2, \dots\}$ is an l(B)-sequence, if k_i is the *j*th entry time of $e^{ik\alpha}$ into B. Such sequences were called uniform sequences by Brunel and Keane [2]. They showed that if $f \in L_1(P)$ and $\{k_n\}$ is a uniform sequence then

$$\lim_{n} \frac{1}{n} \sum_{j=1}^{n} f(T^{k_{j}}\omega) = \int_{\Omega} f(\omega) P(\omega) \quad \text{a.e.}$$

Our results are more general since not every *p*-sequence is necessarily a uniform sequence, and more importantly, our set Ω' of probability one does not depend on the particular *p*-sequence chosen. To see that not every *p*-sequence is a uniform sequence we shall refer to a remarkable example due to Katznelson [3]. In his paper Katznelson constructed a 0-sequence $\{k_1, k_2, \dots\}$ which is dense in \overline{Z} . It follows immediately that this sequence cannot be a uniform sequence. Thus if $\{k_1, k_2, \dots\}$ is a *p*-sequence for p > 0 and we take the union of this *p*-sequence with Katznelson's sequence we obtain a new *p*-sequence which is not a uniform sequence.

0-sequences

As noted above our theorem holds for p-sequences with p > 0. In this section we show by an example that it does not hold in general when p = 0. We shall need a result which we have not seen in print, but we are told is known to harmonic analysts. Let $S = \{k_1, k_2, \dots\}$ be a lacunary sequence, i.e. $k_{n+1}/k_n \ge \rho >$ 1, $n = 1, 2, \dots$. Then we have

LEMMA. $m(\bar{S}) = 0.$

Since a closed set of measure zero is a continuity set for Haar measure it follows that every lacunary sequence is a 0-sequence. Now suppose T is weakly mixing but not strongly mixing. Let U be the associated unitary operator defined by $Uf(\omega) = f(T\omega)$, for $f \in L_2(P)$. Then we may choose $f \in L_2(P)$ with the following properties:

- i) f is bounded,
- ii) $\int_{\Omega} f(\omega) P(d\omega) = 0$,

iii) The spectral measure μ_f of f is continuous and singular with respect to Lebesgue measure.

The spectral measure μ_f is the measure on *C* with Fourier coefficients $\hat{\mu}_f(k) = (U^k f, f)$. The fact that such an *f* exists is an easy consequence of the fact that *T* is weakly mixing but not strongly mixing. Moreover we may choose *f* to be real. Then there exists a sequence $\{r_n\}$ such that $\hat{\mu}_f(r_n) \rightarrow 0$ and another sequence $\{j_n\}$ such that $\hat{\mu}_f(j_n) \ge \varepsilon > 0$ for $n = 1, 2, \cdots$ for some $\varepsilon > 0$. This follows from the fact that on one hand μ is continuous and on the other hand *T* is not strongly mixing. Thus by appropriately combining the two sequences and choosing subsequences we can find a sequence $\{k_n\}$ which is lacunary and such

that $(1/n)\sum_{j=1}^{n} (U^{k_j}f, f)$ oscillates infinitely often from above $3\varepsilon/4$ to below $\varepsilon/4$. But then it follows from the bounded convergence theorem that $(1/n)\sum_{j=1}^{n} f(T^{k_j}\omega)$ cannot converge a.e.

References

1. J. R. Blum and B. Eisenberg, Generalized summing sequences and the mean ergodic theorem, Proc. Amer. Math. Soc. 42 (1974), 423-429.

2. A. Brünel and M. Keane, Ergodic theorems for operator sequences, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 12 (1969), 231-240.

3. Y. Katznelson, Sequences of integers dense in the Bohr group, Proc. Roy. Inst. Tech. (1973), 79-86.

4. N. Wiener and A. Wintner, Harmonic analysis and ergodic theory, Amer. J. Math. 63 (1941), 415-426.

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF WISCONSIN-MILWAUKEE MILWAUKEE, WISCONSIN 53201 USA